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Hydrogenases are enzymes that catalyze the reversible hetero-
lytic dissociation of molecular hydrogen H2 a H+ + H-. The
largest class of hydrogenases contains a NiFe center that is
believed to be the catalytic site for hydrogen activation.1 Recent
insight into the structure of the active site has come from X-ray
structure analyses of single crystals of the [NiFe] hydrogenases
from DesulfoVibrio (D.) gigas2 andD. Vulgaris Miyazaki F.3

The active site (Figure 1) comprises a heterobimetallic cluster
of Ni and Fe atoms. The bridging ligand X was proposed to be
an oxygen or sulfur species in the oxidized states ofD. gigas
andD. Vulgaris, respectively; X was found to be absent in the
crystal structure of the reduced state of two enzymes.4 Three
nonprotein diatomics (2 CN and 1 CO) ligate the Fe atom.5

The “as-isolated” oxidized state of the [NiFe] hydrogenase is
a mixture of two paramagnetic forms (Ni-A and Ni-B) with
slightly differentg-values.1 Ni-B (or “ready”) is reduced within
minutes under an H2 atmosphere while Ni-A (or “unready”)
requires incubation for several hours. An EPR-silent state (Ni-
Si) is passed before a third paramagnetic state (Ni-C) and the
fully reduced state (Ni-R) is obtained. Ni-C is believed to be
an intermediate in the catalytic cycle. Upon illumination, the
Ni-C state is converted into a fourth paramagnetic state (Ni-
L). Carbon monoxide is an inhibitor of the enzyme yielding a
paramagnetic CO-bound state (Ni-CO). All paramagnetic states
areS) 1/2. Previous quantum mechanical studies have addressed
the question of H2 activation by [NiFe] hydrogenases6 and were
mainly used to calculate IR transitions.7 Here, we present the first
relativistic8 description and calculation of magnetic resonance
parameters (g-tensors) of a transition metal containing enzyme9

and show that these values can be correlated with structural

parameters. This approach allows us to propose a reaction
mechanism for the [NiFe] hydrogenases.

Ni-B/Ni-A: Theg-tensor magnitudes and orientations of the
oxidized states were determined from EPR investigations of single
crystals.10 From the similarities of theg-values of Ni-A (2.32,
2.24, 2.01) and Ni-B (2.33, 2.16, 2.01), a drastic change in the
electronic structure of the active site in the Ni-A state compared
to Ni-B is unlikely. Theg-tensor orientation was found to be
very similar for Ni-B and Ni-A.10 In the calculations, first the
possibility of a sulfur species3 (i.e. S2-, SH-, or H2S) as bridging
ligand X (Figure 1) was considered but did not lead to satisfying
results.11 Next, an oxygenic species was considered as X.12 Such
a species was postulated to occupy the position of the bridging
ligand in D. gigas2b andA. Vinosum.13 The g-tensor orientation
and the principal values of Ni-B were confirmed by our
calculations when a OH- ligand occupies the position of the
bridging ligand (Table 1).14 The calculated Ni-Fe distance is 3.00
Å, in reasonable agreement with the value obtained from the X-ray
analysis ofD. gigas (2.9 Å). ZORA calculations with a depro-
tonated bridging ligand, i.e., a O2- bridge, gaveg-values of 2.36,
1.95, 1.84. It was investigated whether the unrealistic values below
ge result from the spin-restricted nature of the wave function.15,16

The consideration of spin-polarization drastically improved the
description. Thus aµ-oxo bridge was assigned to Ni-A. This is
supported by the absence of D2O exchangeable protons in the
active center of the Ni-A state17 and the required prolonged
exposure to H2 to be activated compared to Ni-B (see below).
Protonation of a terminal cysteine as proposed in ref 7b did not
yield satisfyingg-values.18 The postulated protonation of the O2-

bridge in the Ni-B form would not be detectable in the X-ray
structure due to the limited resolution of 2.5 Å.2b
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Figure 1. Active site of [NiFe] hydrogenase fromD. gigas (predomi-
nantely in the Ni-A oxidation state)2, Cys ) cysteine.
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Ni-C: In the X-ray structure analysis of the reduced enzyme,
the position of the bridging ligand is vacant.4 Either the substrate
or the dissociation products may, however, be bound to the active
center that would not be detectable by X-ray crystallography. We
found that only when a hydride ion occupies the position of the
bridging ligand19 and the Ni is in a formal Ni(III) oxidation state
do the calculatedg-tensor principal values agree well with those
found experimentally (see Table 1). The assumption of a hydride
bridge is in agreement with the observation of a large, D2O-
exchangeable1H hyperfine coupling in the Ni-C state.20 For-
mally, Ni-C is two electrons more reduced than the oxidized
Ni-A/Ni-B states. Recent EXAFS results, however, do not
report a large shift in electron density at the Ni atom.21 This is in
agreement with our model that Ni-C contains Ni(III) which
implies that a reduction in the ligand sphere takes place upon
Ni-A/B f Ni-C conversion.

Ni-L: Upon illumination of the Ni-C state at cryogenic
temperatures a new rhombic signal evolves (Ni-L) (see Table
1).1 The reaction is reversible and tempering at 180 K fully
recovers the Ni-C signal. In Ni-L photodissociation of a ligand
has been proposed since the large1H-ENDOR coupling is lost
after photolysis.20 Removal of a proton from the bridging position
leads to a formal Ni(I) state and good agreement with the
experimentalg-values was obtained (Table 1).22

Ni-CO: The hydrogenase is irreversibly inhibited by binding
of exogenous CO. This is accompanied by a change of the
g-values (see Table 1) and observation of a large isotropic13C
hyperfine coupling of 85 MHz when13CO is used.13 Recently,
Happe et al. proposed that the Ni-L state binds CO and not Ni-
C.23 Calculations on a Ni(III) species with an axial CO bound to

the Ni and a vacant bridging position lead to calculated values
of 2.20, 2.03, 2.00 and may thus be ruled out. Only if one assumes
that the Ni(I)-L cluster model binds CO in an axial position do
the calculatedg-tensor principal values agree well with experi-
mental data (Table 1).24 The isotropic13C hyperfine interaction
of CO is also well reproduced (72 MHz).

Reaction Mechanism:Based on the structures of the inter-
mediates suggested here, a reaction model for the heterolytic
splitting of molecular hydrogen can be proposed (see Scheme
1): In the activation cycle, the bridging ligand of Ni-B (OH-)
is protonated and remains only loosely coordinated in the Ni-Si
state as H2O. This water may assist the heterolytic cleavage of
molecular hydrogen by taking up a proton. The hydride then
occupies the position of the bridging ligand in the Ni-C state
and H3O+ is released. We further suggest that in the fully reduced,
diamagnetic Ni-R state an additional hydrogen atom (or a proton
upon one-electron reduction of Ni) is terminally bound to the Ni
atom. Upon regeneration of the catalyst, H2 may be released and
the catalytically active Ni-Si state is recovered.

Experimentally observed magnetic resonance parameters have
been correlated with the composition and geometry of the related
paramagnetic intermediates in the catalytic cycle of an important
enzyme resulting in the proposal of a reaction mechanism.
Furthermore, light-induced changes and inhibition of the enzyme
could be explained. The relativistic DFT approach of the ZORA
Hamiltonian proved to be reliable to calculateg-tensors of a
complex metalloenzyme, with the exception of the Ni-A state
where spin-polarization effects are important.
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Table 1. Comparison of Experimental and ZORA Calculated
g-Tensor Principal Values for [NiFe] Hydrogenase Paramagnetic
States

gx gy gz

Ni-B exptl 2.33 2.16 2.01
calcd 2.21 2.17 1.98

Ni-C exptl 2.20 2.14 2.01
calcd 2.19 2.10 2.00

Ni-L exptl 2.29 2.12 2.05
calcd 2.26 2.10 2.05

Ni-CO exptl 2.12 2.07 2.02
calcd 2.11 2.06 2.00

Scheme 1.A Proposed Mechanism for the Catalytic Cycle of
[NiFe] Hydrogenase
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